
 CUA Controls package for VBX environments, Stingsoft
(for example Visual Basic, Visual C++, Borland C++, PowerBuilder, SQL-Windows, dBase, Delphi)

Label Edit Frame Command
Check Radio Combo Box List Box
Spin ToolButton Meter Termo
Slide Rotor NoteBook Tabs
Lamp Status Icon ToolBox
ToolTips Grid

Introduction
What is CUA/Controls?
Install CUA/Controls
Use CUA/Controls
Use Help
Important
Register

Example step by step
A simple program



What is CUA/Controls?
CUA Controls contains 22 different components in VBX-format for usage in your application.
Some components are enhanced versions of standard components that are part of Visual 
Basic Professional, others are completely new without parallels in VB.

The most popular and requested components of todays modern applications has been 
integrated in this package. Among these are:

tool bars like MS Word, complete with tool tips
tabbed dialogs like in MS Excel 5.0 and MS Word 6.0. These are very common in 
Windows 95 (Chicago).
note books (popular in OS/2),
vertical/horizontal/circular progress indicators,
status bars with built in time/ date/ keyboard status support,
tool boxes,
command buttons with pictures,
spin buttons,
sliders,
knobs,
formatted input,
list boxes and combo boxes with pictures
thermometers.

The purpose is to enable rapid development of modern user interfaces, for prototypes as 
well as for commercial applications. All components are well tested and simple to use.

Most components may be attached to Visual Basic:s data control, which eases rapid and 
efficient development of data base applications. As an extra aid, CUA Controls has 
advanced but easy-to-use support for input validation.

There are built in options for three dimensional effects, however very limited. A lot of other 
VBX packages (such as for example "VB Tools") have a lot of properties for customization of
3D looks. The reasons for the somewhat limited variety of "cosmetics" in CUA Controls 
concerning 3D are that performance and efficiency where given a high priority when this 
package was designed. The more properties put into a control, the more resource 
consuming - and slower - it gets. Parts of CUA Controls are assembly language for the same
reasons; efficiency.

CUA Controls can change appearance like a chameleon. It can take on the looks of a 
number of popular environments. Besides OS/2 and CUA, which are default, Windows 3, 
Windows 3/3D, Borland BWCC and Windows 95 (Chicago) can be emulated. Instead of 
controlling the individual appearance (OS/2, Windows 3 osv) of every single control, CUA 
Controls as a whole is configured via a call to the subroutine ConfigCUA. This way, the look 
of the user interface can be changed as a whole using one single call. Using this 
functionality you can begin to develop applications using the Windows 95 look now! It also 
makes it very easy to create applications where the designer (or the user perhaps) can 
decide what look to use.

Remarks
This help file is distributed with the CUA Controls package, a product from Stingsoft.



Installing CUA Controls
Install CUA Controls using the installation utility (SETUP.EXE).

1. Insert the distribution disk in station A (or B).
2. Choose File/Run from the menu of File Manager or Program Manager.
3. Type a:\setup (or b:\setup).
4. Follow the instructions on your screen.

The installation program will copy cuactls.vbx, cuactls.hlp and cuarun10.dll to the 
Windows system catalog (C:\WINDOWS\SYSTEM). All other VBX:es are copied to the 
directory named at installation (C:\CUACTLS). During installation a subdirectory named 
'SAMPLE' is created, and the demonstration project is copied there.



Using CUA/Controls
This section describes how to use CUA/Controls with Visual Basic.

In Visual Basic VBX components are used on a project basis. When you have included a VBX
in your project and saved it, the component will be shown in the tool box whenever you 
reopen the project.

To include a VBX in a project, first open your project. Then choose menu item 'Add File' from
the 'File' menu. Depending on which VBX component you want to use in your app, choose 
among the following files: 

cuactls.vbx All 22 components.
cuabook.vbx Note book (OS/2 style).
cuacheck.vbx Check button.
cuaclock.vbx Analogue clock.
cuacmd.vbx Command button.
cuacombo.vbx Combo box.
cuaedit.vbx Text box.
cuaframe.vbx Group frame.
cuagrid.vbx Table window.
cuaicon.vbx Icon with adherent text.
cualabel.vbx Lable.
cualamp.vbx Lamps, "traffic lights".
cualist.vbx List box.
cuameter.vbx Progress indicator.
cuaradio.vbx Radio button.
cuarotor.vbx Knob.
cuaslide.vbx Slider.
cuaspin.vbx Spin button.
cuastat.vbx Status bar.
cuatabs.vbx Tabbed dialog.
cuatermo.vbx Thermometer.
cuatolbn.vbx Tool button.
cuatolbx.vbx Tool box.
cuatoltp.vbx Tool tips.

The icon/icons for the chosen component will appear in Visual Basic:s tool box. Usable 
constants and declarations for CUA/Controls are supplied in the file cuactls.bas, suitable to
be included in your project.

When the VBX components has been loaded and shown in VB:s tool box, they are ready to 
be used just like any other standard component.



Using help
The help file is an extensive reference containing information on CUA/Controls. The texts 
follow the clear structure and grouping of subjects that has made Visual Basic:s help texts 
so easy to use.

Here are four ways to request help on CUA/Controls:

1. Double click the icon for CUA/Controls help in program manager. This takes you to the 
table of contents in help for CUA/Controls.

2. Select a component in the tool box and press F1. This takes you directly to the section 
about the selected component.

3. Select a property    in the property window and press F1. This will show you help on the 
selected property directly.

4. When the "Procedure" box in Visual Basic:s code window has focus, you will be 
presented help on the currently selected event.



Buying CUA/Controls
Unregistered evaluation copies of CUA/Controls are fully functional, but will present a "nag 
window" presenting it as an evaluation copy each time it is used. When CUA/Controls has 
been licensed, this "nag window" will no longer appear.

If you find CUA/Controls attractive, you can license it and receive a complete version that 
you can distribute with your programs. The complete version includes a printed handbook, 
as well as each component as a separate VBX, so that only necessary components need to 
be loaded.



Important
This section contains tips on how to use CUA/Controls.

To accomplish three-dimesional effects, CUA/Controls sometimes draw outside the 
components own client area. This makes the component somewhat larger, and the window 
may need some adjustment before everything looks good. Additionally a 3d-component 
leaves garbage if it is moved (since it draws outside it's own area).

Some components, like for instance "CUARotor" needs the form's "Clipcontrols" set to False 
to function correctly.

Most components has a standard size, which is used every time a new is placed on a form. 
This size is used only when you double click the component in Visual Basic:s tool box, not 
using common drag and drop placement. Try this, it saves time and effort!



A simple program
...



 CUACheck Control
See also Properties Events Methods

Description
A check box displays an X when selected; the X disappears when the check box is cleared.   
Use this control to give the user a True/False or Yes/No option. You can use check boxes in 
groups to display multiple choices from which the user can select one or more.    The 
functionality is the same as the standard CheckBox, with some additions. KeyDown and all 
messages concerning drag and drop are passed on to the owning to ease implementation 
of keyboard support and drag and drop.

This is a bound control, it easily connects to the database engine.
Example

OS/2 CUA             Windows 3              Windows 3D           Borland   BWCC      Windows 95  

File name
CUACHECK.VBX

Remarks
Check boxes and option buttons function similarly but with an important difference: any 
number of check boxes on a form can be selected at the same time.    In contrast, only one 
option button in a group can be selected. To display text next to the check box, set the 
Caption property.    Use the Value property to determine the state of the boxselected, 
cleared, or unavailable.

This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUACheck 
control you should install the file CUACHECK.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUARadio



Properties
Alignment BackColor Caption
DataChanged DataField DataSource
DragIcon DragMode Enabled
Font3D FontBold FontItalic
FontName FontSize FontStrikethru
FontUnderline ForeColor Height
HelpContextID hWnd Index
Left MousePointer Name
Parent TabIndex TabStop
Tag Top Value
Visible Width



Events
Click DragDrop DragOver
GotFocus KeyDown KeyPress
KeyUp LostFocus



Methods
Drag Move
Refresh SetFocus
ZOrder



 CUACombo Control
See also Properties Events Methods

Description
A combo box combines the features of a text box and a list box.    Use a combo box to give 
the user the choice of typing in the text box portion or selecting an item from the list 
portion of the control.
It is compatible with the standard ComboBox, with some additions. It can connect with VB:s
database engine unlike the original. The list and the text box can be connected to two 
different sources. The property ListDataSource can be used to automatically fill the list with 
lines from the database. It is also more visually appealing, no white space can be seen 
between the box and the button.

A ComboBox is used to let the user select one of several options. Either it can only be 
selected (such combo boxes have no spacing between the box and button), or the user can 
type text in the text box. The main advantage with a ComboBox is that it consumes little 
screen space. 

Filling the list
Use the property ListDataSource to fill the list with options from a database. ListDataSource
shall in that case name the data control which supplies the lines from the database.

If you do not have many options, the easiest thing is to enter the alternatives in 
ListDataSource behind a leading equal sign separated with semicolon.(;) (for example 
"=Apple;Banana;Lemon").

If the list contain multiple columns; for example a code followed by text, you can use the 
property ListColBound to specify which column should be connected to the text box.

Connecting the combo box to a field in the database
Use the properties DataSource and DataField to connect the combo to a field in a database.

Pictures
The property ListPicture is an array of pictures, one for every line in the combo box. This 
can not be set in design mode, it has to be done from code.

   ' Add a new line
   cboFont.AddItem "Courier New"
   ' Use 'NewIndex' to assign a picture to the line,
   ' picTT is a PictureBox. LoadPicture may also be used.
   cboFont.ListPicture(cboFont.NewIndex) = picTT

File name
CUACOMBO.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUACombo 
control you should install the file CUACOMBO.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 



methods.



See Also
CUAList



Properties
BackColor BorderStyle DataChanged
DataField DataSource DragIcon
DragMode Enabled FontBold
FontItalic FontName FontSize
FontStrikethru FontUnderline ForeColor
Height HelpContextID hWnd
Index ItemData Left
List ListCount ListDataSource
ListIndex ListPicture MousePointer
Name NewIndex Parent
Pattern SelLength SelStart
SelText Sorted Style
TabIndex TabStop Tag
Top Visible Width



Events
Change Click DblClick
DragDrop DragOver DropDown
GotFocus KeyDown KeyPress
KeyUp LostFocus



Methods
AddItem Drag Move
Refresh RemoveItem SetFocus
ZOrder



 CUACommand Control
See also Properties Events Methods

Description
A command button is chosen by the user to begin, interrupt, or end a process.    When 
chosen, a command button appears pushed in, and is sometimes called a "push button."

To display text on a command button, set its Caption property.    A user can always choose a
command button by clicking it.    To allow the user to choose it by pressing Enter, set the 
Default property to True.    To allow the user to choose the button by pressing Esc, set the 
button's Cancel property to True.

Corresponds to the standard button, but can take on the looks of different popular UI:s and 
may also contain Pictures. There are 40 standard pictures build in and available through the
property StandardButton. Use the property Picture if you want any other picture.

Example
OS/2 CUA             Windows 3              Windows 3D           Borland   BWCC      Windows 95  

File name
CUACMD.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the 
CUACommand control you should install the file CUACMD.VBX in the customer's Microsoft 
Windows \SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB
product provides tools to help you write setup programs that install your applications 
correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUALabel



Properties
BackColor Cancel Caption
Default DragIcon DragMode
Enabled Font3D FontBold
FontItalic FontName FontSize
FontStrikethru FontUnderline Height
HelpContextID hWnd Index
Left MousePointer Name
Parent Picture PictureAlign
StandardButton TabIndex TabStop
Tag Top Value
Visible Width



Events
Click DragDrop DragOver
GotFocus KeyDown KeyPress
KeyUp LostFocus MouseDown
MouseMove MouseUp



Methods
Drag Move
Refresh SetFocus
ZOrder



 CUAEdit Control
See also Properties Events Methods

Description
A text box control, sometimes called an "edit field" or "edit control," can display information
entered at design time, entered by the user, or assigned to the control in code at run time.

To display multiple lines of text in a text box, set the MultiLine property to True.    If a 
multiline text box does not have a horizontal scroll bar, text in the box wraps automatically 
even when the text box is resized.    To customize the scroll bar combination on a text box, 
set the ScrollBars property.A text box can also act as a destination link in a DDE 
conversation.

This is a database component, it can automatically connect to the database engine.
Added functionality consist of: messages concerning drag and drop are passed to the 
owning container to ease drag and drop programming. One often requested property 
missing from the standard TextBox is ReadOnly.

Readonly fields
ReadOnly fields are automatically shown without frame in white forms, or sunken with gray 
background in gray forms. This conforms to to standard praxis for graphical interfaces, and 
clearly signals -- to the user -- whether the field is editable or not.

The textbox still works with Windows clipboard in ReadOnly mode. It can be changed during
program execution, for example to reflect a user's authority level. If the property Enabled is
set False, it will not be possible to tab to it.

Validation
CUAEdit has extensive support for validation. Allowed data type can be specified via Type 
(text, integer, float, date, time). If that is not sufficient, input can be controlled on character
level via an input Mask. For example, the mask "### ##" is suitable for a Swedish ZIP 
code. Validation can also be performed when the focus is about to leave the field (Validate).
If the content is non-appetizing to Validate, CUA/Controls will flash the field with a red 
background color which is restored to normal at the next keypress.

File name
CUAEDIT.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUAEdit 
control you should install the file CUAEDIT.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUALabel



Properties
BackColor BorderStyle DataChanged
DataField DataSource DragIcon
DragMode Enabled FontBold
FontItalic FontName FontSize
FontStrikethru FontUnderline ForeColor
Height HelpContextID HideSelection
hWnd Index Left
LinkItem LinkMode LinkTimeout
LinkTopic LowerCase Mask
MaxLength MousePointer MultiLine
Name OEMConvert PasswordChar
Pattern ReadOnly ScrollBars
SelLength SelStart SelText
TabIndex TabStop Tag
Text Top Type
UpperCase Visible Width



Events
Change DragDrop DragOver
GotFocus KeyDown KeyPress
KeyUp LinkClose LinkError
LinkNotify LinkOpen LostFocus
MouseDown MouseMove MouseUp
Validate



Methods
Drag LinkExecute LinkPoke
LinkRequest Move Refresh
SetFocus ZOrder



 CUAFrame Control
See also Properties Events Methods

Description
A frame provides an identifiable grouping for controls.    You can also use a frame to 
subdivide a form functionallyfor example, to separate a group of option buttons from other 
groups of option buttons.

To group controls, first draw the frame and then draw the controls inside the frame.    This 
enables you to move the frame and controls together.    If you draw a control outside the 
frame and then try to move it inside, the control will be on top of the frame and you'll have 
to move the frame and controls separately.    To select multiple controls in a frame, hold 
down the Ctrl key while using the mouse to draw a box around the controls.

File name
CUAFRAME.VBX

Remarks
This custom control is distributed with the CUA/Controls package
Distribution Note    When you create and distribute applications that use the CUAFrame 
control you should install the file CUAFRAME.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUALabel



Properties
BackColor BorderStyle Caption
ClipControls DragIcon DragMode
Enabled Font3D FontBold
FontItalic FontName FontSize
FontStrikethru FontUnderline ForeColor
Height HelpContextID hWnd
Index Left MousePointer
Name Pattern TabIndex
Tag Top Visible
Width



Events
DragDrop DragOver



Methods
Drag Move
Refresh ZOrder



CUAGrid Control
See also Properties Events Methods

Description
Not documented yet.

File name
CUAGRID.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUAGrid 
control you should install the file CUAGRID.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUAListBox



Properties
BackColor DragIcon
DragMode Enabled FontBold
FontItalic FontName FontSize
FontStrikethru FontUnderline ForeColor
Height hWnd Index
Left MousePointer Name
Parent TabIndex Tag
Top Visible Width



Events
Change



Methods
AddItem Drag Move
Refresh RemoveItem ZOrder



 CUAIcon Control
See also Properties Events Methods

Description
This component is designed for the occations where you need a draggable icon with a 
descriptive text that moves with the picture.

Two properties are more important than the other:
* Icon to choose picture
* Caption to set the text.

File name
CUAICON.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUAIcon 
control you should install the file CUAICON.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUAMeter



Properties
BackColor BorderStyle DragIcon
DragMode Enabled FontBold
FontItalic FontName FontSize
FontStrikethru FontUnderline ForeColor
Height hWnd Index
Left MousePointer Name
Parent TabIndex Tag
Top Visible Width



Events
Change



Methods
Drag Move
Refresh ZOrder



 CUALabel Control
See also Properties Events Methods

Description
A label is a graphical control you can use to display text that the user can't change directly.

You can write code that changes a label in response to events at run time.    For example, if 
your application takes a few minutes to commit a change, you could display a processing-
status message in a label.    You can also use a label to identify a control, such as a text box,
that does not have its own Caption property.    Set the AutoSize and WordWrap properties if 
you want the label to properly display variable-length lines or varying 
numbers of lines.    A label can also act as a destination link in a DDE conversation.    To do 
this, set the LinkTopic property to establish a link, set the LinkItem property to specify an 
item for the conversation, and set the LinkMode property to activate the link.    When these 
have been set, Visual Basic attempts to initiate the conversation and displays a message if 
it is unable to do so.

All messages concerning drag and drop are passed on to the owning container to ease 
development of drag and drop applications. You can also use three-dimensional effects with
CUALabel, the text can appear sunken or raised (besides normal).

File name
CUALABEL.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUALabel 
control you should install the file CUALABEL.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUAEdit



Properties
Alignment AutoSize BackColor
BackStyle BorderStyle Caption
DataField DataSource DragIcon
DragMode Enabled Font3D
FontBold FontItalic FontName
FontSize FontStrikethru FontUnderline
ForeColor Height Index
Left LinkItem LinkMode
LinkTimeout LinkTopic MousePointer
Name Pattern TabIndex
Tag Top Visible
Width WordWrap



Events
Change Click DblClick
DragDrop DragOver LinkClose
LinkError LinkNotify LinkOpen
MouseDown MouseMove MouseUp



Methods
Drag LinkExecute LinkPoke
LinkRequest Move Refresh
ZOrder



 CUALamp Control
See also Properties Events Methods

Description
The lamp control can be used as an alternative to a meter; to indicate work in progress. It 
can take on four different styles, accessed through the Style property. Each style supports 
four values: No light, Green, Yellow and Red.

File name
CUALAMP.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUALamp 
control you should install the file CUALAMP.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUAMeter



Properties
BackColor DragIcon DragMode
Enabled FontBold FontItalic
FontName FontSize FontStrikethru
FontUnderline ForeColor Height
hWnd Index Left
MousePointer Name Parent
Style TabIndex Tag
Top Value Visible
Width



Events
Change



Methods
Drag Move
Refresh ZOrder



 CUAList Control
See also Properties Events Methods

Description
This control is compatible with VB:s ListBox, with some additions. For example; each line 
may contain a picture. It can also be bound to a database.

Filling the list box
Use the property ListDataSource to fill the list with alternatives from a database. 
ListDataSource should contain the name of the data control that supplies the lines from the 
database.

You may also type the alternatives directly into ListDataSource, if you enter an equal sign 
first and separate the fields with a semicolon ("=Car;Lorry;Train").

Even columns using proportional fonts
When the standard font "MS Sans Serif" -- a proportional typeface -- is used with data in 
multiple columns, the result is often less than satisfying. 
To cure this; begin by separeting the columns with a tab character (Chr$(9)), not spaces. 
Then use the property ColWidth to control exactly how wide each column should be. Use 
only numbers, and separate each number with a comma or semicolon.

   ' Set column widths
   lstList.ColWidth = "5,15,25"
   ' Add a new line to the list
   lstList.AddItem "1234" & Chr$(9) & "Name" & Chr$(9) & "Address"

Connecting to a database
The properties DataSource and DataField are used to connect the listbox to a field in the 
database.

Pictures
The property ListPicture is an array of pictures, one for every line in the list. This cannot be 
set in design mode, it must be done from code.

   ' Add a new line
   lstFont.AddItem "Courier New"
   ' Use 'NewIndex' to assign the new line a picture,
   ' picTT is a PictureBox. LoadPicture can also be used.
   lstFont.ListPicture(lstFont.NewIndex) = picTT

File name
CUALIST.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUAList 
control you should install the file CUALIST.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUACombo



Properties
BackColor BorderStyle Columns
ColWidth DataChanged DataField
DataSource DragIcon DragMode
Enabled FontBold FontItalic
FontName FontSize FontStrikethru
FontUnderline ForeColor Height
HelpContextID hWnd Index
ItemData Left List
ListCount ListDataSource ListIndex
ListPicture MousePointer MultiSelect
Name NewIndex Parent
Pattern Selected Sorted
TabIndex TabStop Tag
Text Top TopIndex
Visible Width



Events
Click DblClick DragDrop
DragOver GotFocus KeyDown
KeyPress KeyUp LostFocus
MouseDown MouseMove MouseUp



Methods
AddItem Drag Move
Refresh RemoveItem SetFocus
ZOrder



 CUAMeter Control
See also Properties Events Methods

Description
A horizontal or vertical gauge that is often used to give feedback about some process that 
will take some time to complete. The official recommendation is that a progress indicator 
should be used if something takes more than five seconds to complete. Otherwise the hour 
glass is a viable alternative for processes taking more than two seconds to finish. 
Remember these are rough estimates and times vary significantly depending on how fast 
the computer is.

Use the property Orientation to set up a horizontal or vertical meter.

The properties Min, Max and Value determines how the meter will be drawn.

To display the percentage rate, set the Percent property to True.

If you want a segmented look to the meter, set the Segmented value to True.

If you want a 3D look to the meter, experiment with the Meter3D and Pattern properties.

The following code snippet will drive the meter from it's min value to max:

   For I% = mtr1.Min To mtr1.Max
      mtr1.Value = I%
   Next

File name
CUAMETER.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUAMeter 
control you should install the file CUAMETER.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUASlide
CUARotor



Properties
BackColor BorderStyle DragIcon
DragMode Enabled FontBold
FontItalic FontName FontSize
FontStrikethru FontUnderline ForeColor
Height hWnd Index
Left Max Meter3D
Min MousePointer Name
Orientation Parent Pattern
Percent Segmented TabIndex
Tag Top Value
Visible Width



Events
Change



Methods
Drag Move
Refresh ZOrder



 CUANoteBook Control
See also Properties Events Methods

Description
The intention is to give the impression of a notebook with multiple pages that can be seen 
one at a time. This reduces screen clutter, operations that otherwise require multiple 
windows can be simplified to one single notebook.

Details
The CUA notebook is a flexible control that requires a small amount of coding to implement 
the pages in the control. When you first place a notebook on a form, it is empty. To add 
pages to the dialog, place one CUAStatus control per page within the notebook. Organize 
the pages in a control array with a name such as "stsPage". Then set the property TabCount
to the number of pages. Captions of the individual tabs are set through the TabCaption 
property, and the color of individual tabs may be set with TabColor.

The notebook can be implemented in one of two ways:
1. Manually, by handling the event TurnPage as the user clicks a tab.

This is the most flexible way, but also designwise more complicated (and it also 
requires you to monitor the "Resize" event to adjust the size of the pages).

Sub bok1_TurnPage (ToPage As Integer)
   ' User wants to turn page, first hide the current page ...
   stsPage(bok1.Tab).Visible = False
   ' ... then show the requested page
   stsPage(ToPage).Visible = True
End Sub

2. Automatically, by giving page one the name page1, page two page2 etc. This way, 
pages will be automatically positioned, sized and shown/hidden and you will be able 
to switch between pages in design mode using the right mouse button.

File name
CUABOOK.VBX

Remarks
This custom control is distributed with the CUA/Controls package
Distribution Note    When you create and distribute applications that use the CUABook 
control you should install the file CUABOOK.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
Tabbed dialog



Properties
BackColor Caption ClipControls
DragIcon DragMode Enabled
Font3D FontBold FontItalic
FontName FontSize FontStrikethru
FontUnderline Height HelpContextID
Index Left MousePointer
Name TabCountTab
Pattern Spiral Stacked
TabIndex TabStop Tag
Top Visible Width



Events
Click DragDrop DragOver
MouseDown MouseMove MouseUp
TurnPage



Methods
Refresh Move Drag
SetFocus ZOrder



 CUARadio Control
See also Properties Events Methods

Description
An option button displays an option that can be turned on or off.

Usually, option buttons are used as part of an option group to display multiple choices from 
which the user can select only one.    You can group option buttons by drawing them inside 
a frame, a picture box, or directly on a form.    To group option buttons in a frame or picture 
box, draw the frame or picture box first, and then draw the option buttons inside.    All 
option buttons within a frame or picture box are treated as a group.    Option buttons on a 
form are also treated as a separate group from any option buttons in a frame or picture 
box. While option buttons and check boxes may appear to function similarly, there is an 
important difference:    when a user selects an option button, the other option buttons in the
same group are automatically cancelled.    In contrast, any number of check boxes can be 
selected.

OS/2 CUA         Windows 3         Windows 3D       Borland              BWCC     Windows 95  

File name
CUARADIO.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUARadio 
control you should install the file CUARADIO.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUACheck



Properties
Alignment BackColor Caption
DragIcon DragMode Enabled
Font3D FontBold FontItalic
FontName FontSize FontStrikethru
FontUnderline ForeColor Height
HelpContextID hWnd Index
Left MousePointer Name
Parent TabIndex TabStop
Tag Top Value
Visible Width



Events
Click DragDrop DragOver
GotFocus KeyDown KeyPress
KeyUp LostFocus



Methods
Drag Move
Refresh SetFocus
ZOrder



 CUARotor Control
See also Properties Events Methods

Description
A rotating knob which behaves like it's real life counterpart. A "round slider".

File name
CUAROTOR.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUARotor 
control you should install the file CUAROTOR.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUASlider
CUAMeter



Properties
DragIcon DragMode Enabled
FontBold FontItalic FontName
FontSize FontStrikethru FontUnderline
ForeColor HelpContextID hWnd
Index Left Max
Min MousePointer Name
Parent TabIndex TabStop
Tag Top Value
Visible



Events
Change



Methods
Drag Move
Refresh ZOrder



 CUASlide Control
See also Properties Events Methods

Description
This control allows the user to create a slider on a form. 

File name
CUASLIDE.VBX

Remarks
This custom control is distributed with the CUA/Controls package
Distribution Note    When you create and distribute applications that use the CUASlide 
control you should install the file CUASLIDE.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
Meter
Rotor



Properties
BackColor Min Visible
DragIcon MousePointer
DragMode Name
Enabled Orientation
ForeColor TabIndex
Height TabStop
HelpContextID Tag
Index Top
Left Value
Max Width



Events
Change



Methods
Refresh Move
Drag ZOrder



 CUASpin Control
See also Properties Events Methods

Description
Basically there are two ways to manage the CUASpin control:

For simple numeric values, the best way is to use the 'automatic' mode. In this case, you 
must give a value for the Buddy property. With this mode, if the user give an invalid value 
in the text control, the spin doesn' t perform any action.

The second way is to handle CUASpin notifications message and do it yourself. In this case, 
you must give values for Min, Max and you must update the Value property each time the 
text control is updated.

File name
CUASPIN.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUASpin 
control you should install the file CUASPIN.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUAEdit



Properties
Buddy DataChanged DataField
DataSource DragIcon DragMode
Enabled Height HelpContextID
hWnd Index Left
Max Min MousePointer
Name Orientation Parent
TabIndex Tag Top
Value Visible Width
Wrap



Events
Change DragDrop DragOver



Methods
Drag Move
Refresh ZOrder



 CUAStatus Control
See also Properties Events Methods

Description
A status bar is common in Windows applications, used to give the user information and 
short help texts. The CUAStatus provides for six common status fields through it's 
StandardStatus property.

File name
CUASTAT.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUAStatus 
control you should install the file CUASTAT.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUAMeter



Properties
BackColor BorderStyle DragIcon
DragMode Enabled FontBold
FontItalic FontName FontSize
FontStrikethru FontUnderline ForeColor
Height hWnd Index
Left MousePointer Name
Parent StandardStatus
TabIndex Tag Top
Visible Width



Events
Change



Methods
Drag Move
Refresh ZOrder



 CUATabs Control
See also Properties Events Methods

Description
The intention is to give the impression of a window with multiple pages that can be seen 
one at a time. This reduces screen clutter, operations that otherwise require multiple 
windows can be simplified to one single "tabbed dialog". Depending on configuration (see 
ConfigCUA), this control take on these different looks:

OS/2 CUA                                   Windows 3                                   Windows 3D  

Borland BWCC                                         Windows 4  

Details
The CUA tabbed dialog is a flexible control that requires a small amount of coding to 
implement the pages in the control. When you first place a tabbed dialog on a form, it is 
empty. To add pages to the dialog, place one CUAStatus control per page within the tabbed 
dialog. Organize the pages in a control array with a name such as "stsPage". Then set the 
property TabCount to the number of pages. Captions of the individual tabs are set through 
the TabCaption property, and the color of individual tabs may be set with TabColor.

The tabbed dialog can be implemented in one of two ways:
1. Manually, by handling the event TurnPage as the user clicks a tab.

This is the most flexible way, but also designwise more complicated (and it also 
requires you to monitor the "Resize" event to adjust the size of the pages).

Sub tab1_TurnPage (ToPage As Integer)
   ' User wants to turn page, first hide the current page ...
   stsPage(tab1.Tab).Visible = False
   ' ... then show the requested page
   stsPage(ToPage).Visible = True
End Sub

2. Automatically, by giving page one the name page1, page two page2 etc. This way, 
pages will be automatically positioned, sized and shown/hidden and you will be able 
to switch between pages in design mode using the right mouse button.

File name
CUATABS.VBX

Remarks
This custom control is distributed with the CUA/Controls package
Distribution Note    When you create and distribute applications that use the CUATabs 
control you should install the file CUATABS.VBX in the customer's Microsoft Windows \



SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
NoteBook



Properties
ActiveTabBold BackColor ClipControls
DragIcon DragMode Enabled
Font3D FontBold FontItalic
FontName FontSize FontStrikethru
FontUnderline Height HelpContextID
Index Left MousePointer
Name Spiral Stacked
Tab TabCaption TabColor
TabCount TabGroup TabIndex
TabStop TabWidth Tag
Top Visible Width



Events
Click DragDrop DragOver
MouseDown MouseMove MouseUp
TurnPage



Methods
Refresh Move Drag
SetFocus ZOrder



 CUATermo Control
See also Properties Events Methods

Description
This is special meter control in the form of a thermometer. It differs from the meter in that 
it's value can fluctuate up and down, and that it has a warning area.

File name
CUATERMO.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUATermo 
control you should install the file CUATERMO.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUAMeter
CUASlide



Properties
BackColor DragIcon DragMode
Enabled FontBold FontItalic
FontName FontSize FontStrikethru
FontUnderline ForeColor Height
High hWnd Index
Left Max Min
MousePointer Low Name
Parent TabIndex Tag
Top Value Visible
WarnHigh WarnLow Width



Events
Change



Methods
Drag Move
Refresh ZOrder



 CUAToolBox Control
See also Properties Events Methods

Description
A toolbox consist of a "topmost" floating window populated with buttons. Each button 
usually represents a different "tool" with a picture, and only one "tool" can be selected at a 
time.

File name
CUATOLBX.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUAToolBox 
control you should install the file CUATOLBX.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUAToolButton



Properties
BackColor DragIcon
DragMode Enabled FontBold
FontItalic FontName FontSize
FontStrikethru FontUnderline ForeColor
Height hWnd Index
Left MousePointer Name
Parent
TabIndex Tag Top
Visible Width



Events
Change



Methods
AddItem Drag Move
Refresh RemoveItem ZOrder



 CUAToolButton Control
See also Properties Events Methods

Description
Toolbars are very popular in todays modern Windows applications. The idea is to collect the 
most common commands for quick access. This is faster and more efficient than menues, 
since the menu has to be pulled down. On the downside, a toolbar consume some screen 
space. It is common practise to let the user decide for himself whether to use the toolbar or
not.

A toolbar is populated with tool buttons, which this component supplies.There are 40 
standard pictures built in through the property StandardButton, which is both preactical and
resource preserving. If you are not satisfied with any of the standard pictures, you can 
design and use your own with the property Picture, or the properties ButtonSource=Custom
with CustomButton and CustomCount set to indicate which picture should be used. 

A button can be either a command button or a toggle button. Command buttons do not 
stay down, while toggle buttons stay up or down for each click with the mouse.

You only have to use one single image per button. CUA/Controls will derive different looks 
(normal, attribute, pressed, disabled) from this single image. If you want to draw your own 
images, you should probably use the bitmap size 16*15 pixels (if property StandardSize is 
True) or a different size of your choice if StandardSize is set False.

OS/2 CUA             Windows 3              Windows 3D           Borland   BWCC      Windows 95  

Do this to implement a tool bar in your own application:

1. Place a CUAStatus in the window, to be used as the toolbar.
2. Set CUAStatus.Align=Top for standard appearance.
3. Place several CUAToolButton on the toolbar, one for each command.
4. Use StandardButton if any of the 40 standard images is suitable.
5. Enter code to handle Click event when the user clicks the button.
File name
CUATOLBN.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the 
CUAToolButton control you should install the file CUATOLBN.VBX in the customer's Microsoft
Windows \SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB
product provides tools to help you write setup programs that install your applications 
correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 



methods.



See Also
CUACommand



Properties
AutoSize ButtonSource ButtonType
CustomButton CustomCount DragIcon
DragMode Enabled Height
hWnd Index Left
MousePointer Name Parent
Picture StandardButton TabIndex
Tag Top Value
Visible Width



Events
Click DragDrop DragOver
MouseDown MouseMove MouseUp



Methods
Drag Move
Refresh ZOrder



 CUAToolTips Control
See also Properties Events Methods

Description
Tool tips are the small, yellow windows that can be seen in modern applications, supplying 
brief help texts when the cursor rests over a tool button. This can be done on any control, 
but is especially useful with tool buttons, since they are som small that it is often hard to 
interpret the pictures if you are not used to the application.

You only have to use one CUAToolTips per window, it can be used to show help on every 
component that resides in that window. During execution, the event NeedText is activated 
whent CUAToolTips needs the text. Enter your own code in this event handler to return 
your desired tool tips help text.

Do this to implement tool tips:

1. Place a CUAToolTips in the window.
2. Enter code in the event NeedText to supply the texts.

File name
CUATOLTP.VBX

Remarks
This custom control is distributed with the CUA/Controls package.
Distribution Note    When you create and distribute applications that use the CUAToolTips 
control you should install the file CUATOLTP.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Visual Basic Setup Kit included with the Professional VB product 
provides tools to help you write setup programs that install your applications correctly.
All of the properties, events, and methods for this control are listed above.    Properties and 
events that apply only to this control, or require special consideration when used with it, 
are underlined.    They are documented in this help file.    See the Visual Basic Language 
Reference or online Help for documentation of the remaining properties, events, and 
methods.



See Also
CUAToolButton



Properties
BackColor Caption Enabled
FontBold FontItalic FontName
FontSize FontStrikethru FontUnderline
Index Left Name
Parent TabIndex Tag
Top Visible Width



Events
NeedText



Methods
Move Refresh



ActiveTabBold Property
See also

Applies To
Tabbed Dialog

Description
Decides if the current tab's text is shown in bold face.

Usage
[form.]control.ActiveTabBold[ = setting %]

Remarks
By default, ActiveTabBold is set to False.

Data Type
Boolean



Alignment Property
See also

Applies To
CUACheck, CUARadio

Description
Controls if the text is shown to the left or right of the radio button / check box.

Usage
[form.]control.Alignment[ = setting %]

Setting
The BorderStyle Property settings are:
Setting Description
0 (Default) Right.
1 Left.

Remarks
By default, Alignment is set to 0 (Right).

Data Type
Integer (Enumerated)



AutoSize Property
See also

Applies To
Label, ToolButton

Description
Determines if the ToolButton should take on a standard size.

Usage
[form.]control.AutoSize[ = setting %]

Setting
The AutoSize Property settings are:
Setting Description
0 False, You may size the button freely.
1 Standard size 26x25 pixels.

Remarks
By default, Alignment    is set to 1 (True).

Data Type
Integer (Enumerated)



BorderStyle Property
See also

Applies To
CUACombo, CUAFrame, CUALabel, CUAList, CUAStatus

Description
Determines what kind of border the control has.

Usage
[form.]control.BorderStyle[ = setting %]

Setting
The BorderStyle Property settings are:
Setting Description
0 No frame.
1 (Default) Single border.
2 Shadowed border.
3 Sunken.
4 Raised.
5 Dip.
6 Bump.
7 Sunken (thin).
8 Raised (thin).

Data Type
Integer (Enumerated)



Buddy Property
See also

Applies To
Spin Button

Description
Determines if the spin button has an automated connection to a related text box. If Buddy 
is set to the name of a numeric text box on the same form, the spin button will 
automatically adjust the contents of the associated text box.

Usage
[form.]control.Buddy[ = name$]

Setting

Data Type
Integer (Enumerated)



ButtonSource Property
See also

Applies To
ToolButton

Description
Determines if the graphics in the button are from the standard or a custom source.

Usage
[form.]control.ButtonSource[ = setting %]

Setting
The ButtonSource Property settings are:
Setting Description
0 Standard
1 Custom

Data Type
Integer (Enumerated)



ButtonType Property
See also

Applies To
ToolButton

Description
Determines if the ToolButton is a Command button or a Toggle button.

Usage
[form.]control.ButtonType[ = setting %]

Setting
The ButtonType Property settings are:
Setting Description
0 Command
1 Toggle (stays down)

Data Type
Integer (Enumerated)



Cancel Property
See also

Applies To
Command button

Description
Determines whether a command button is the Cancel button on a form.

Usage
[form.]control.Cancel[ = boolean]

Setting
The Cancel property settings are:
Setting Description
True The command button is the Cancel button.
False (Default) The command button isn't the Cancel button.

Remarks
Use the Cancel property to give a user the option of canceling uncommitted changes and 
returning the form to its previous state.

Only one command button on a form can be the Cancel button.    When the Cancel property 
is set to True for one command button, it is automatically set to False for all other command
buttons on the form.    When a command button's Cancel property is True and the form is 
the active form, the user can choose the command button by clicking it, pressing the Esc 
key, or pressing Enter when the button has the focus.

Tip      For a form that supports irreversible operations, such as deletions, it's a good idea to 
make the Cancel button the default button.    To do this, set both the Cancel property and 
the Default property to True.

Data Type
Boolean



ColWidth Property
See also

Applies To
List Box

Description
Determines width of each column in a list box. Columns are separated by tab characters 
(Ascii code 9). Enter each column width expressed in number of characters, separated with 
a comma.

Usage
[form.]control.ColWidth[ = setting $]

Remarks
If this property is left empty, columns will be seven characters wide. If you supply only one 
number, all columns will be given that width. If you supply several numbers separated by 
commas you can control the width of each and every column. The average character width 
as reported by Windows API GetTextMetrics will be used to determine column widths for 
proportional fonts.

Data Type
String



CustomButton Property
See also

Applies To
ToolButton

Description
Index into custom bitmap given by the property Picture.

Usage
[form.]control.CustomButton[ = setting %]

Remarks
Indexes start at zero, and go up to CustomCount - 1.

Data Type
Integer (Enumerated)



CustomCount Property
See also

Applies To
ToolButton

Description
Determines how many graphic slices there are in the Picture property.

Usage
[form.]control.CustomCount[ = setting %]

Data Type
Integer (Enumerated)



Default Property
See also

Applies To
Command button

Description
Determines whether a command button is the Default button on a form.

Usage
[form.]control.Default[ = boolean]

Setting
The Default property settings are:
Setting Description
True The command button is the default button.    Only one button on a form 

can be the default button.    When Default is set to True for one button, it 
is automatically set to False for all other buttons on the form.    When the 
button's Default property is True and its parent form is active, the user 
can choose the button (invoking its Click event) by pressing the Enter 
key.    Any other control with the focus does not receive a keyboard event 
(KeyDown, KeyPress, or KeyUp) for the Enter key unless the user has 
moved the focus to another command button on the same form.    In this 
case, pressing Enter chooses that button instead of the default button.

False (Default) The command button is not the default button.
Remarks
For a form or dialog box that supports an irreversible action such as a delete operation, 
make the Cancel button the default button by setting its Default property to True.

Data Type
Boolean



Font3D Property
See also

Applies To
Command, Frame, Label

Description
Affects three-dimensional effects in a component's text.

Usage
[form.]control.Font3D[ = setting %]

Setting
The Font3D Property settings are:
Setting Description
0 (Default)    Normal.
1 Sunken.
2 Raised.

Data Type
Integer (Enumerated)



High Property
See also

Applies To
Termometer

Description
Indicates the highest value reached for the termometer.

Usage
[form.]control.High[ = setting %]

Remarks
This property is read only.

Data Type
Integer



ListColBound Property
See also

Applies To
Combo box

Description
Determines which of the columns - in a multi column list - that represents the value of the 
control.

Usage
[form.]control.ListColBound[ = integer%]

Remarks
Multiple columns can be shown in a list; for example a code in one column and an 
explanation in another. ListColBound determines which of the columns that is used in the 
text portion of the combo box.

Data Type
Integer



ListDataSource Property
See also

Applies To
Combo box, List box

Description
Used for automatic filling of the list. 

Usage
[form.]control.ListDataSource[ = string$]

Remarks
If items shall be fetched from a database, this field shall contain the name of the supplying 
data control. 
Can also contain the values directly; in that case the field is started with an equal sign 
followed by the values separated with semicolon (t ex =Apples;Bananas;Oranges).

Data Type
String



ListPicture Property
See also

Applies To
Combo box, List box, Tool box

Description
Determines which graphic to be displayed on a selected line in the control.

Usage
[form.]control.ListPicture(Index)[ = picture]

Setting
The picture property settings are:
Setting Description
(none) (Default) No picture.
(Bitmap, icon, metafile) Specifies a graphic.    You can load the graphic from the 

Properties window at design time.    At run time, you can also set this 
property using the LoadPicture function on a bitmap, icon, or metafile.

Remarks
At design time, you can transfer a graphic with the Clipboard using the Copy, Cut, and 
Paste commands on the Edit menu.    At run time, you can use Clipboard methods such as 
GetData, SetData, and GetFormat with the non-text Clipboard formats CF_BITMAP, 
CF_METAFILE, and CF_DIB, as defined in CONSTANT.TXT, a Visual Basic file that specifies 
system defaults.
When setting the Picture property at design time, the graphic is saved and loaded with the 
form.    If you create an executable file, the file contains the image.    When you load a 
graphic at run time, the graphic is not saved with the application.    Use the SavePicture 
statement to save a graphic from a form or picture box into a file.

Data Type
Integer



Low Property
See also

Applies To
Termometer

Description
Determines the lowest value reached for the termometer.

Usage
[form.]control.Low[ = setting %]

Remarks
This value is read only.

Data Type
Integer



LowerCase Property
See also

Applies To
Edit box

Description
Determines if characters are forced to lower case.

Usage
[form.]control.LowerCase[ = picture]

Data Type
Boolean



Mask Property
See also

Applies To
Edit box

Description
Controls individual characters entered into an edit box. The following standard, predefined 
input masks are available at design time.
Mask Description
Null String (Default) No mask. Acts like a standard text box.
(###) ###-#### Standard North American Phone number.
(###) ###-#### Ext(#####) Standard North American Phone number with extension.
###-##-#### US Social Security Number.
##-???-## US Medium date. Example: 20-May-92
##-##-## US Short date. Example: 05-20-92
##:## ?? Medium time. Example: 05:36 AM
##:## Short time. Example: 17:36
### ## Swedish Zip Code.

Setting
The mask property characters are:
Mask character Description
# Digit placeholder.
. Decimal placeholder
, Thousands separator
: Time separator
/ Date separator
\ Treat the next character in the mask as a literal. This allows you 

to include the '#', '&', 'A' and '?' characters in the mask.
& Character placeholder. Valid values for this placeholder are ANSI 

characters in the following ranges: 32-126 and 128-255.
A Alphanumeric character placeholder. For example a-z, A-Z, 0-9.
? Letter placeholder, for example: a-z, A-Z.
Literal All other symbols are displayed as literals; that is, as 

themselves.
Usage
[form.]control.Mask[ = string $]

Data Type
String



Max Property
See also

Applies To
Meter, Slider, Spin, Termometer

Description
Contains the maximum value allowed for the control.

Usage
[form.]control.Max[ = setting %]

Remarks
The Max Property setting cannot be lower than the Min Property.
By default, Max is set to 100.

Data Type
Integer



Meter3D Property
See also

Applies To
Meter

Description
Determines if 3D effects should be given the filled meter.

Usage
[form.]control.Meter3D[ = setting %]

Remarks
By default, Max is set to False.

Data Type
Boolean



Min Property
See also

Applies To
Meter, Slider, Spin, Termometer

Description
Contains the minimum value allowed for the control.

Usage
[form.]control.Min[ = setting %]

Setting
The Min property is not allowed to exceed the value of the Max property.
By default, Min is set to 0.

Data Type
Integer



OEMConvert Property
See also

Applies To
Edit box

Description
Determines if characters are converted between DOS/Windows character sets.

Usage
[form.]control.OEMConvert[ = boolean]

Data Type
Boolean



Orientation Property
See also

Applies To
Meter, Slider, Spin

Description
Sets a horizontal or vertical orientation for the control.

Usage
[form.]control.Orientation[ = setting %]

Setting
The Orientation Property settings are:
Setting Description
0 Horizontal.
1 Vertical.

Data Type
Integer (Enumerated)



Pattern Property
See also

Applies To
Combo, Frame, Label, List

Description
Determines the pattern used to fill the control.

Usage
[form.]control.Pattern[ = setting%]

Settings
The Pattern Property settings are:
Setting Description
0 No pattern.
1 Borland "chiseled steel".
2 25% filling.
3 50% filling.
4 75% filling.

Data Type
Integer



Percent Property
See also

Applies To
Meter

Description
Determines if a percentage text should be shown in the meter's centre.

Usage
[form.]control.Percent[ = boolean]

Data Type
Boolean



Picture Property
See also

Applies To
Command, ToolButton

Description
Determines a graphic to be displayed in the control.

Usage
[form.]control.Picture[ = picture]

Setting
The picture property settings are:
Setting Description
(none) (Default) No picture.
(Bitmap, icon, metafile) Specifies a graphic.    You can load the graphic from the 

Properties window at design time.    At run time, you can also set this 
property using the LoadPicture function on a bitmap, icon, or metafile.

Remarks
At design time, you can transfer a graphic with the Clipboard using the Copy, Cut, and 
Paste commands on the Edit menu.    At run time, you can use Clipboard methods such as 
GetData, SetData, and GetFormat with the non-text Clipboard formats CF_BITMAP, 
CF_METAFILE, and CF_DIB, as defined in CONSTANT.TXT, a Visual Basic file that specifies 
system defaults.
When setting the Picture property at design time, the graphic is saved and loaded with the 
form.    If you create an executable file, the file contains the image.    When you load a 
graphic at run time, the graphic is not saved with the application.    Use the SavePicture 
statement to save a graphic from a form or picture box into a file.

Data Type
Integer



PictureAlign Property
See also

Applies To
Command

Description
Determines where a graphic is to be displayed, in relation to button text.

Usage
[form.]control.PictureAlign[ = setting %]

Setting
The PictureAlign property settings are:
Setting Description
0 (Default) Vertically centered to the left of button text.
1 Horizontally centered above the button text.

Data Type
Integer (Enumerated)



ReadOnly Property
See also

Applies To
Edit box

Description
Determines if editing is allowed in the control.

Usage
[form.]control.ReadOnly[ = boolean]

Remarks
If ReadOnly is True, the control will automatically signal this to the user by changing it's 
appearance. It will be sunken with a gray background in gray windows, else it will have no 
visual frame.

Data Type
Boolean



Segmented Property
See also

Applies To
Meter

Description
Determines if the filled part of the meter should be segmented.

Usage
[form.]control.Segmented[ = boolean]

Data Type
Boolean



Spiral Property
See also

Applies To
NoteBook, Tabs

Description
Determines if the control should have a spiral binder, like a real life notebook .

Usage
[form.]control.Spiral[ = boolean]

Remarks
By default, Spiral is set to False.

Data Type
Boolean



Stacked Property
See also

Applies To
NoteBook, Tabs

Description
Determines if the control border has the look of several stacked papers.

Usage
[form.]control.Stacked[ = boolean]

Remarks
By default, Stacked is set to False for Tabs but True for a NoteBook.

Data Type
Boolean



StandardButton Property
See also

Applies To
Command, ToolButton

Description
There are 40 standard pictures built into CUA/Controls. This property determines which of 
the standard graphics that should be shown in the control. Additional bitmaps can be found 
in the \CUACTLS\BMP subdirectory.

Usage
[form.]control.StandardButton[ = setting %]
Setting Description
0 (Default) Blank.
1 OK
2 Cancel
3 Help
4 New
5 Open
6 Save
7 Print
8 Exit
9 Cut
10 Copy
11 Paste
12 Undo
13 Context help
14 First
15 Previous
16 Next
17 Last
18 New Record
19 Ascending
20 Descending
21 Find
22 Find Next
23 Replace
24 Zoom
25 Look
26 Mail
27 Palette
28 Stop
29 Back
30 Drop
31 Index



32 Book
33 Lock
34 Margin Text
35 Left Text
36 Centered Text
37 Right Text
38 Bold
39 Italic
40 Underline

Data Type
Integer (Enumerated)



StandardStatus Property
See also

Applies To
Status Bar

Description
There are 6 status items built into CUA/Controls. This property determines which of the 
standard items should be shown in the control.

Usage
[form.]control.StandardStatus[ = setting %]

Setting
The type property may have one of the following settings:
Setting Description
0 (Default) Blank.
1 Ins
2 Caps
3 Num
4 Scroll
5 Date
6 Time

Data Type
Integer (Enumerated)



Style Property
See also

Applies To
Lamp

Description
Four different sizes of lamps may be chosen.

Usage
[form.]control.Style[ = setting %]

Setting
The Style Property settings are:
Setting Description
0 Small lamp.
1 Standard lamp.
2 Small traffic light.
3 Traffic light.



Tab Property
See also

Applies To
NoteBook, Tabs

Description
Contains the current page number in a notebook or tabbed dialog. Read/write, i e the 
current page number can be examined, as well as set - which will generate a TurnPage 
event.

Usage
[form.]control.Tab[ = setting %]

Remarks
This value is zero-based, by default it is set to 0 (the first page).

Data Type
Integer



TabCaption Property
See also

Applies To
NoteBook, Tabs

Description
Contains the caption of the current tab.

Usage
[form.]control.TabCaption[ = setting$]

Remarks
By default, TabCount is set to "Tab " + the tab number.

Data Type
String



TabColor Property
See also

Applies To
NoteBook, Tabs

Description
Contains the background color that should be used to paint the current tab.

Usage
[form.]control.TabColor[ = setting &]

Remarks
By default, TabColor is set to 0 (black), which means it will use standard colors.

Data Type
Long



TabCount Property
See also

Applies To
NoteBook, Tabs

Description
Contains the number of pages in a notebook or tabbed dialog.

Usage
[form.]control.TabCount[ = setting %]

Remarks
By default, TabCount is set to 2.

Data Type
Integer



TabGroup Property
See also

Applies To
Tabbed Dialog

Description
Determines where a new line of tabs starts. If True, a new line of tabs starts from here.

Usage
[form.]control.TabGroup[ = setting %]

Remarks
By default, TabGroup is set to False.

Data Type
Integer



TabWidth Property
See also

Applies To
Tabbed Dialog

Description
Contains the width of the current tab.

Usage
[form.]control.TabWidth[ = setting %]

Remarks
If set to zero, it will be automatically sized.

Data Type
Integer



Type Property
See also

Applies To
Edit Box

Description
Determines what kind of data is allowed in the Edit Box.

Usage
[form.]control.Type[ = setting %]

Setting
The type property may have one of the following settings:
Setting Description
0 (Default) Character.
1 Integer
2 Float.
3 Date.

Data Type
Integer (Enumerated)



UpperCase Property
See also

Applies To
Edit box

Description
Determines if characters are forced to upper case.

Usage
[form.]control.UpperCase[ = picture]

Data Type
Boolean



Value Property
See also

Applies To
Check, Lamp, Meter, Radio, Rotor, Slider, Spin, Termometer, ToolButton

Description
Contains the current value of the control.

Usage
[form.]control.Value[ = setting %]

Setting
This property has somewhat different meanings depending on the control it applies to.

Check Box and Attributed ToolButton:
Setting Description
0 Unchecked.
1 Checked
2 Indeterminate.

Radio Button and Command ToolButton:
Setting Description
0 Unchecked.
1 Checked

Meter, Rotor, Slider, Spin: Value is always in the range specified of the Min and Max 
property.

Data Type
Integer (Enumerated for Check, Radio and ToolButton)



WarnHigh Property
See also

Applies To
Termometer

Description
Determines where the warning area ends in the termometer.

Usage
[form.]control.WarnHigh[ = setting %]

Remarks
By default, WarnHigh is set to 0.

Data Type
Integer



WarnLow Property
See also

Applies To
Termometer

Description
Determines where the warning area starts in the termometer.

Usage
[form.]control.WarnLow[ = setting %]

Remarks
By default, WarnLow is set to 0.

Data Type
Integer



Wrap Property
See also

Applies To
Spin

Description
Indicates if the spinner, when reaching it's limits, should wrap around.

Usage
[form.]control.Wrap[ = boolean]

Setting
By default, Wrap is set to False.

Data Type
Boolean



Change Event
See also Example

Description
Occurs when the value of the control changes; either as a result of the user manipulating 
the control, or if changed from inside program code. 

Syntax
Sub ctlname_Change ()

Remarks
The new value is already set when this event occurs.



NeedText Event
See also Example

Description
Occurs when the mouse cursor is over some window, and the ToolTips control needs the 
descriptive text for that window. 

Syntax
Sub ctlname_NeedText (hWnd As Integer, ToolText As String)

Remarks
The NeedText event uses the following arguments:
Argument Description
hWnd The handle of the window the mouse cursor is over.
ToolText The short tip text returned by the event handler. If an empty text is 

returned, the ToolTips window will be hidden.



TurnPage Event
See also Example

Description
Occurs either as a result of the user selecting one of the tabs, or if the property Tab is set 
from program code. It is the responsibility of this event handler to implement the turning of 
pages in a notebook.

Syntax
Sub ctlname_TurnPage (ToPage As Integer)

Remarks
The TurnPage event uses the following arguments:
Argument Description
ToPage The number of the page that should be made current.



Validate Event
See also Example

Description
Occurs when the focus shifts a away from the control.

Syntax
Sub ctlname_Validate (Cancel As Integer)

Remarks
The Validate event uses the following arguments:
Argument Description
Cancel Set True inside Validate to prevent the focus leaving the control.



ConfigCUA Sub
Description
Use this subroutine to determine which of the supported looks to use.

Syntax
Sub ConfigCUA (ByVal Look As Integer, ByVal Redraw As Integer)

Remarks
The ConfigCUA subroutine uses the following arguments:
Argument Description
Look Determines which look will be used.
Redraw Boolean, determines if all windows should be redrawn or not.

The Look argument can take on the following values (found in cuactls.bas):
Value Description
32759 OS/2
32760 Windows 3.x - 3D
32761 Windows 95 (Chicago)
32762 Borland BWCC
32763 Windows 3.x



Change example
To try this example, paste the code into the Declarations section of a form that contains a 
CUAEdit control named txt1. Then press F5 and enter something in the text box.

Sub txt1_Change ()
   Beep
End Sub



NeedText example
To try this example, paste the code into the Declarations section of a form that contains a 
CUAToolTips and four CUAToolButtons named tbn1. Then press F5 and move the cursor.

Sub tip1_NeedText (hWnd As Integer, ToolText As String)
   Select Case hWnd
      Case tbn1(0).hWnd
         ToolText = "Ny"
      Case tbn1(1).hWnd
         ToolText = "Öppna"
      Case tbn1(2).hWnd
         ToolText = "Spara"
      Case tbn1(3).hWnd
         ToolText = "Skriv ut"
   End Select
End Sub



TurnPage example
To try this example, paste the code into the Declarations section of a form that contains a 
CUATab control named tab1. Then press F5 and click the tabs.

Sub tab1_TurnPage (ToPage As Integer)
   picPage(tab1.Tab).Visible = False
   picPage(ToPage).Visible = True
End Sub



Validate example
To try this example, paste the code into the Declarations section of a form that contains a 
CUAEdit control named txt1. Then press F5 and enter something in the text box.

Sub txt1_Validate (Cancel As Integer)
   Dim Number%

   Number = Val(txt1.Text)
   Cancel = (Number < 1 Or Number > 1000)
End Sub






